Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autophagy ; : 1-12, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38497492

RESUMO

Macroautophagy/autophagy has previously been regarded as simply a way for cells to deal with nutrient emergency. But explosive work in the last 15 years has given increasingly new knowledge to our understanding of this process. Many of the functions of autophagy that are unveiled from recent studies, however, cannot be reconciled with this conventional view of cell survival but, instead, point to autophagy being integrally involved at a deeper level of cell biology, playing a critical role in maintaining homeostasis and promoting an integrated stress/immune response. The new appreciation of the role of autophagy in the evolutionary trajectory of cancer and cancer interaction with the immune system provides a mechanistic framework for understanding the clinical benefits of autophagy-based therapies. Here, we examine current knowledge of the mechanisms and functions of autophagy in highly plastic and aggressive melanoma as a model disease of human malignancy, while highlighting emerging dimensions indicating that autophagy is at play beyond its classical face.Abbreviation: AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ATF4: activating transcription factor 4; ATG: autophagy related; BRAF: B-Raf proto-oncogene, serine/threonine kinase; CAFs: cancer-associated fibroblasts; CCL5: C-C motif chemokine ligand 5; CQ: chloroquine; CRISPR: clustered regularly interspaced short palindromic repeats; CTLA4: cytotoxic T-lymphocyte associated protein 4; CTL: cytotoxic T lymphocyte; DAMPs: danger/damage-associated molecular patterns; EGFR: epidermal growth factor receptor; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; FITM2: fat storage inducing transmembrane protein 2; HCQ: hydroxychloroquine; ICB: immune checkpoint blockade; ICD: immunogenic cell death; LDH: lactate dehydrogenase; MAPK: mitogen-activated protein kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; NDP52: nuclear dot protein 52; NFKB/NF-κ B: nuclear factor kappa B; NBR1: the neighbor of BRCA1; NK: natural killer; NRF1: nuclear respiratory factor 1; NSCLC: non-small-cell lung cancer; OPTN: optineurin; PDAC: pancreatic ductal adenocarcinoma; PDCD1/PD-1: programmed cell death 1; PPT1: palmitoyl-protein thioesterase 1; PTEN: phosphatase and tensin homolog; PTK2/FAK1: protein tyrosine kinase 2; RAS: rat sarcoma; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TGFB/TGF-ß: transforming growth factor beta; TMB: tumor mutational burden; TME: tumor microenvironment; TSC1: TSC complex subunit 1; TSC2: TSC complex subunit 2; ULK1: unc-51 like autophagy activating kinase 1; UVRAG: UV radiation resistance associated.

2.
Curr Treat Options Oncol ; 24(2): 130-145, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36670319

RESUMO

OPINION STATEMENT: The primordial autophagy process, originally identified as a starvation response in baker's yeast, has since been shown to have a wide spectrum of functions other than survival. In many cases, it is accepted that autophagy operates as a key tumor suppressor mechanism that protects cells from adverse environmental cues by enforcing homeostasis and maintaining the functional and structural integrity of organelles. Paradoxically, heightened states of autophagy are also seen in some cancers, leading to the prevailing view that the pro-survival aspect of autophagy might be hijacked by some tumors to promote their fitness and pathogenesis. Notably, recent studies have revealed a broad range of cell-autonomous autophagy in reshaping tumor microenvironment and maintaining lineage integrity and immune homeostasis, calling for a renewed understanding of autophagy beyond its classical roles in cell survival. Here, we evaluate the increasing body of literature that argues the "double-edged" consequences of autophagy manipulation in cancer therapy, with a particular focus on highly plastic and mutagenic melanoma. We also discuss the caveats that must be considered when evaluating whether autophagy blockade is the effector mechanism of some anti-cancer therapy particularly associated with lysosomotropic agents. If autophagy proteins are to be properly exploited as targets for anticancer drugs, their diverse and complex roles should also be considered.


Assuntos
Antineoplásicos , Melanoma , Neoplasias , Humanos , Neoplasias/terapia , Melanoma/terapia , Melanoma/tratamento farmacológico , Autofagia/fisiologia , Antineoplásicos/uso terapêutico , Sobrevivência Celular , Microambiente Tumoral
3.
Langmuir ; 38(48): 14909-14917, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472118

RESUMO

Robust antimicrobial coatings featuring high transparency, strong bactericidal activity, and an easy application procedure on generic surfaces can be widely accepted by the public to prevent pandemics. In this work, we demonstrated the hand-sprayer-based approach to deposit complex oxide coatings composed of Co-Mn-Cu-Zn-Ag on screen protectors of smartphones through acidic redox-assisted deposition (ARD). The as-obtained coatings possess high transparency (99.74% transmittance at 550 nm) and long-lasting durability against swiping (for 135 days of average use) or wet cleaning (for a routine of 3 times/day for 33 days). The spray coating enabling 3.14% Escherichia coli viability can further be reduced to 0.21% through a consistent elemental composition achieved via the immersion method. The high intake of Cu2+ in the coating is majorly responsible for the bactericidal activity, and the presence of Ag+ and Zn2+ is necessary to achieve almost complete eradication. The success of extending the bactericidal coatings on other typical hand-touched surfaces (e.g., stainless steel railings, rubber handrails, and plastic switches) in public areas has been demonstrated.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Aço Inoxidável , Escherichia coli , Óxidos
4.
J Cancer ; 13(11): 3268-3279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118522

RESUMO

Thyroid cancer has been known as the most common endocrine malignancy. Although majority of thyroid cancer types respond well to conventional treatment including surgery and radioactive iodine therapy, about 10% of those with differentiated thyroid cancer will present distant metastasis and will have persistent or recurrent disease. Even more serious is a rare type of thyroid cancer called anaplastic thyroid cancer (ATC), which accounts for about 1%, has been demonstrated as the most lethal and aggressive form of human malignancy. Unfortunately, these tumors are also frequently resistant to traditional therapy. Previous study have shown that Salmonella inhibits tumor growth, in part, by inducing autophagy - a cellular process that is important in the innate and adaptive immunity in response to viral or bacterial infection. In our study, we intended to investigate whether Salmonella can inhibit tumor growth by inducing autophagy, specifically in thyroid cancer and elucidate the possible molecular mechanism. In order to determine the signaling pathway involved in tumor cell autophagy, we used Salmonella to treat ATC cells line ASH-3 and KMH-2 in vitro. The autophagic markers, particularly autophagy-related gene 6 (Beclin-1), microtubule-associated protein 1A/1B-light chain 3 (LC3) and p62, were observed to be differentially expressed after infection with Salmonella indicating an activated autophagy in ATC cells. In addition, the protein expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), phospho-p70 ribosomal s6 kinase (P-p70S6K) in tumor cells were decreased after Salmonella infection. In vivo, we also found that substantial cell numbers of Salmonella targeted tumor tissue, and regulated anti-tumor mechanisms. Our findings showed that Salmonella activated autophagic signaling pathway and inhibited ATC tumor growth via downregulation of AKT/mTOR pathway.

5.
J Cancer ; 13(6): 1725-1733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399709

RESUMO

Chemotherapy is a treatment method commonly used for cancer and that patients showing low to no response to the treatment often developed drug resistance via multiple mechanisms. Natural products have been shown to reduce tumor drug resistance. Hinokitiol, a natural tropolone derivative, has potential as an antitumor agent. To improve the efficacy and safety of hinokitiol, a further understanding of hinokitiol interactions with the tumor microenvironment is necessary. The presence of plasma membrane multidrug resistance protein P-glycoprotein (P-gp) is favorable for tumor cells to elicit chemotherapeutic resistance. Here, we showed that hinokitiol dose-dependently decreased P-gp expression and suppressed the P-gp-driven efflux activity based on Rhodamine 123 assay. The protein expression levels of phosph-protein kinase B (P-AKT), phosph-mammalian targets of rapamycin (P-mTOR), and phosph-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells were likewise reduced after hinokitiol treatment. The transfection of cells with active P-AKT rescued hinokitiol-induced downregulation of P-gp, suggesting the involvement of Akt/mTOR/p70s6K signaling in P-gp expression. Our results showed that hinokitiol can chemosensitize cancer cells. These findings indicate that hinokitiol could enhance 5-Fluorouracil therapeutic effects in murine B16F10 and CT26 tumor cells via downregulation of the AKT/mTOR pathway.

6.
Biomedicines ; 9(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34829795

RESUMO

Bacteria-mediated cancer therapy (BMCT) is an emerging tool that may advance potential approaches in cancer immunotherapy, whereby tumors are eradicated by the hosts' immune system upon recruitment and activation by bacteria such as Salmonella. This paper provides an emphasis on the immunomodulatory effects that encompasses both the innate and adaptive immune responses inherently triggered by Salmonella. Furthermore, modifications of Salmonella-based treatment in the attempt to improve tumor-specific immune responses including cytokine therapy, gene therapy, and DNA vaccine delivery are likewise discussed. The majority of the findings described herein incorporate cell-based experiments and murine model studies, and only a few accounts describe clinical trials. Salmonella-based cancer therapy is still under development; nonetheless, the pre-clinical research and early-phase clinical trials that have been completed so far have shown promising and convincing results. Certainly, the continuous development of, and innovation on, Salmonella-based therapy could pave the way for its eventual emergence as one of the mainstream therapeutic interventions addressing various types of cancer.

7.
Cancers (Basel) ; 13(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207850

RESUMO

Targeting metastasis is a vital strategy to improve the clinical outcome of cancer patients, specifically in cases with high-grade malignancies. Here, we employed a Salmonella-based treatment to address metastasis. The potential of Salmonella as an anticancer agent has been extensively studied; however, the mechanism through which it affects metastasis remains unclear. This study found that the epithelial-to-mesenchymal transition (EMT) inducer SNAI1 was markedly reduced in Salmonella-treated melanoma cells, as revealed by immunoblotting. Furthermore, wound healing and transwell assays showed a reduced in vitro cell migration following Salmonella treatment. Transfection experiments confirmed that Salmonella acted against metastasis by suppressing protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling, which in turn inhibited SNAI1 expression. Since it is known that metastasis is also influenced by inflammation, we partly characterized the immune infiltrates in melanoma as affected by Salmonella treatment. We found through tumor-macrophage co-culture that Salmonella treatment increased high mobility group box 1 (HMGB1) secretion in tumors to coax the polarization of macrophages in favor of an M1-like phenotype, as shown by increased inducible nitric oxide synthase (iNOS) expression and Interleukin 1 Beta (IL-1ß) secretion. Data from our animal study corroborated the in vitro findings, wherein the Salmonella-treated group obtained the lowest lung metastases, longer survival, and increased iNOS-expressing immune infiltrates.

8.
Int J Med Sci ; 17(3): 403-413, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32132875

RESUMO

Heparanase cleaves the extracellular matrix by degrading heparan sulfate that ultimately leads to cell invasion and metastasis; a condition that causes high mortality among cancer patients. Many of the anticancer drugs available today are natural products of plant origin, such as hinokitiol. In the previous report, it was revealed that hinokitiol plays an essential role in anti-inflammatory and anti-oxidation processes and promote apoptosis or autophagy resulting to the inhibition of tumor growth and differentiation. Therefore, this study explored the effects of hinokitiol on the cancer-promoting pathway in mouse melanoma (B16F10) and breast (4T1) cancer cells, with emphasis on heparanase expression. We detected whether hinokitiol can elicit anti-metastatic effects on cancer cells via wound healing and Transwell assays. Besides, mice experiment was conducted to observe the impact of hinokitiol in vivo. Our results show that hinokitiol can inhibit the expression of heparanase by reducing the phosphorylation of protein kinase B (Akt) and extracellular regulated protein kinase (ERK). Furthermore, in vitro cell migration assay showed that heparanase downregulation by hinokitiol led to a decrease in metastatic activity which is consistent with the findings in the in vivo experiment.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Glucuronidase/metabolismo , Monoterpenos/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tropolona/análogos & derivados , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/genética , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tropolona/uso terapêutico
9.
Cancers (Basel) ; 12(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878272

RESUMO

Immunotherapy is becoming a popular treatment modality in combat against cancer, one of the world's leading health problems. While tumor cells influence host immunity via expressing immune inhibitory signaling proteins, some bacteria possess immunomodulatory activities that counter the symptoms of tumors. The accumulation of Salmonella in tumor sites influences tumor protein expression, resulting in T cell infiltration. However, the molecular mechanism by which Salmonella activates T cells remains elusive. Many tumors have been reported to have high expressions of programmed death-ligand 1 (PD-L1), which is an important immune checkpoint molecule involved in tumor immune escape. In this study, Salmonella reduced the expression of PD-L1 in tumor cells. The expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), and the phospho-p70 ribosomal s6 kinase (P-p70s6K) pathway were revealed to be involved in the Salmonella-mediated downregulation of PD-L1. In a tumor-T cell coculture system, Salmonella increased T cell number and reduced T cell apoptosis. Systemic administration of Salmonella reduced the expressions of PD-L-1 in tumor-bearing mice. In addition, tumor growth was significantly inhibited along with an enhanced T cell infiltration following Salmonella treatment. These findings suggest that Salmonella acts upon the immune checkpoint, primarily PD-L1, to incapacitate protumor effects and thereby inhibit tumor growth.

10.
Int J Med Sci ; 16(5): 636-643, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31217730

RESUMO

Chemotherapy is now in common use for the treatment of tumors; however, with tumor growth retardation comes the severe side effects that occur after a chemotherapy cycle. Eicosapentaenoic acids (EPA) used in combination with chemotherapy has an additive effects and provides a rationale for using EPA in tandem with chemotherapy. To improve the efficacy and safety of this combination therapy, a further understanding that EPA modulates with the tumor microenvironment is necessary. Connexin 43 (Cx43) is involved in enhancing chemosensitivity that was suppressed in a tumor microenvironment. We aim to investigate the role of EPA in chemosensitivity in murine melanoma by inducing Cx43 expression. The dose-dependent upregulation of Cx43 expression and gap junction intercellular communication were observed in B16F10 cells after EPA treatment. Furthermore, EPA significantly increased the expression levels of mitogen-activated protein kinases (MAPK) signaling pathways. The EPA-induced Cx43 expression was reduced after MAPK inhibitors. Knockdown Cx43 in B16F10 cells reduced the therapeutic effects of combination therapy (EPA plus 5-Fluorouracil). Our results demonstrate that the treatment of EPA is a tumor induced Cx43 gap junction communication and enhances the combination of EPA and chemotherapeutic effects.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Conexina 43/metabolismo , Ácido Eicosapentaenoico/farmacologia , Melanoma Experimental/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Conexina 43/genética , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Ácido Eicosapentaenoico/uso terapêutico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Cutâneas/patologia , Microambiente Tumoral/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
11.
Biomedicines ; 7(2)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052558

RESUMO

Presently, cancer is one of the leading causes of death in the world, primarily due to tumor heterogeneity associated with high-grade malignancy. Tumor heterogeneity poses a tremendous challenge, especially with the emergence of resistance not only to chemo- and radiation- therapies, but also to immunotherapy using monoclonal antibodies. The use of Salmonella, as a highly selective and penetrative antitumor agent, has shown convincing results, thus meriting further investigation. In this review, the mechanisms used by Salmonella in combating cancer are carefully explained. In essence, Salmonella overcomes the suppressive nature of the tumor microenvironment and coaxes the activation of tumor-specific immune cells to induce cell death by apoptosis and autophagy. Furthermore, Salmonella treatment suppresses tumor aggressive behavior via inhibition of angiogenesis and delay of metastatic activity. Thus, harnessing the natural potential of Salmonella in eliminating tumors will provide an avenue for the development of a promising micro-based therapeutic agent that could be further enhanced to address a wide range of tumor types.

12.
J Pharm Bioallied Sci ; 10(1): 15-20, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29657503

RESUMO

CONTEXT: The study investigated the medicinal properties of Spathiphyllum cannifolium (Dryand. ex Sims) Schott as a possible source of antimicrobial compounds. MATERIALS AND METHODS: The phytochemical constituents were screened using qualitative methods and the antibacterial and antifungal activities were determined using agar well diffusion method. STATISTICAL ANALYSIS: One-way analysis of variance and Fisher's least significant difference test were used. RESULTS: The phytochemical screening showed the presence of sterols, flavonoids, alkaloids, saponins, glycosides, and tannins in both ethanol and chloroform leaf extracts, but triterpenes were detected only in the ethanol leaf extract. The antimicrobial assay revealed that the chloroform leaf extract inhibited Candida albicans, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa, whereas the ethanol leaf extract inhibited E. coli, S. aureus, and B. subtilis only. The ethanol and chloroform leaf extracts exhibited the highest zone of inhibition against B. subtilis. The antifungal assay showed that both the leaf extracts have no bioactivity against Aspergillus niger and C. albicans. CONCLUSIONS: Results suggest that chloroform is the better solvent for the extraction of antimicrobial compounds against the test organisms used in this study. Findings of this research will add new knowledge in advancing drug discovery and development in the Philippines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...